skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Salerno, Elvin V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The fine tuning of CIE coordinates was demonstrated in a series of molecular tetrachroic chromophores, Dy3+/Ga3+metallacrowns, through modifications of the symmetry around Dy3+and the nature of the organic ligands. 
    more » « less
  2. Two Gd III Fe III 4 metallacrown complexes are presented and analyzed for their magnetic properties. One of these species is newly identified and exhibits a bent ring geometry as opposed to the more conventional flatter conformation of the other. Both complexes are quite similar magnetically, exhibiting antiferromagnetic exchange coupling values ca . J (Fe III –N–O–Fe III ) = −7 cm −1 and J (Gd III –O–Fe III ) = −0.7 cm −1 . When analyzed for the molecular magnetocaloric effect, maximum −Δ S m values of 7.3 J K −1 kg −1 at 3 K and at 6.1 J K −1 kg −1 at 4 K were exhibited. A detailed structural-magnetic correlation is established and an assessment of several similar magnetic metallacrowns with diverse metal combinations is given with regards to their potential magnetocaloric properties. Strategies for improving the magnetocaloric properties within the Metaln + FeIII4 family of metallacrowns are proposed regarding the ratio between coupling parameters J (Fe III –N–O–Fe III )/ J (Metal n+ –O–Fe III ). 
    more » « less
  3. null (Ed.)